Reading assignments and collected reading list for nonparametric statistics#

Collected readings#

Inequalities (including some probability inequalities)#

  • Beckenbach, E.F., and R. Bellman, 1983. Inequalities, Springer.

  • Boucheron, S. G. Lugosi, and P. Massart, 2013. Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford U. Press. 10.1093/acprof:oso/9780199535255.003.0001

  • Hardy, G., J.E. Littlewood, and G. Polya, 1952. Inequalities, 2nd edition, Cambridge.

  • Marshall, A.W., I. Olkin, and B.C. Arnold, 2011. Inequalities: Theory of Majorization and its Applications, Springer.

  • Maurer, A. and M. Pontil, 2009. Empirical Bernstein Bounds and Sample Variance Penalization, COLT. https://www.cs.mcgill.ca/~colt2009/papers/012.pdf#page=1

Convexity, convex analysis, optimization#

  • Anderson, E.J., and P. Nash, 1987. Linear Programming in Infinite-Dimensional Spaces, Wiley.

  • Luenberger, D.G., 1969. Optimization by Vector Space Methods, Wiley.

  • Rockafellar, R.T., 1970. Convex Analysis, Princeton U. Press.

  • Shor, N.Z., ???? Nondifferentiable Optimization, Springer.

Probability and stochastic processes#

  • Breiman, L., 1992. Probability, SIAM.

  • Durrett, R., 2016. Essentials of Stochastic Processes, 3rd edition, Springer.

  • Feller, W., 1971. An Introduction to Probability Theory and Its Applications, v.2, Wiley.

Permutation tests#

  • Lehmann, E., 2006. Nonparametrics: Statistical Methods Based on Ranks, Springer.

  • Pesarin, F. and L. Salmaso, 2010. Permutation Tests for Complex Data: Theory, Applications, and Software, Wiley

  • Romano, J.P., 1988. A bootstrap revival of some nonparametric distance tests, J. Amer. Stat. Assoc., 83, 698–708.

  • Romano, J.P., 1989. Bootstrap and randomization tests of some nonparametric hypotheses, Ann. Stat., 17, 141–159.

  • Walther, G., 1997. Absence of correlation between the solar neutrino flux and the sunspot number, Phys. Rev. Lett. 79, 4522–4524.

  • Walther, G., 1999. On the solar-cycle modulation of the Homestake solar neutrino capture rate and the shuffle test, Ap. J. 513, 990–996.

  • Phipson, B., and G.K. Smyth, 2010. Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn, Statistical Applications in Genetics and Molecular Biology, https://doi.org/10.2202/1544-6115.1585

The Jackknife and the Bootstrap#

  • Beran, R., 1995. Stein confidence sets and the bootstrap, Stat. Sinica, 5, 109–127

  • Beran, R., 1990. Calibrating predictions regions, J. Amer. Stat. Assoc., 85, 715–723

  • Beran, R., 1990. Refining bootstrap simultaneous confidence sets, J. Amer. Stat. Assoc., 85, 417-426

  • Beran, R., 1987. Prepivoting to reduce level error of confidence sets, Biometrika, 74, 457–468

  • Efron, B., 1982. The Jackknife, the bootstrap, and other resampling plans, SIAM, Philadelphia.

\(E\)-values#

Supermartingale-based inference and sequential tests:#

Conformal prediction#

  • Schafer, G., and V. Vovk, 2008. A tutorial on conformal prediction, Journal Machine Learning Res., 9, 371-421.

Data splitting#

Randomized experiments#

  • Aronow, P.M., H. Chang, and P. Lopatto, 2022?. Fast computation of exact confidence intervals for randomized experiments with binary outcomes. https://lopat.to/permutation.pdf

  • Caughey, D., A. Dafoe, X. Li, and L. Miratrix, 2021. Randomization Inference beyond the Sharp Null: Bounded Null Hypotheses and Quantiles of Individual Treatment Effects https://arxiv.org/abs/2101.09195

  • Ding, P., 2017. A Paradox from Randomization-Based Causal Inference, Statist. Sci. 32, 331-345. 10.1214/16-STS571

  • Fisher, R.A., 1935. The Design of Experiments, Hafner.

  • Li, X. and P. Ding, 2016. Exact confidence intervals for the average causal effect on a binary outcome, Statistics in Medicine, 35, 6, 957-960. 10.1002/sim.6764

  • Wu and Ding, 2021. Randomization Tests for Weak Null Hypotheses in Randomized Experiments, JASA, 116. https://www.tandfonline.com/doi/abs/10.1080/01621459.2020.1750415

Density estimation and inference about probability densities#

  • Daubechies, I. 1992. Ten lectures on wavelets, SIAM, Philadelphia, PA.

  • Donoho, D.L., 1988. One-Sided Inference about Functionals of a Density, Ann. Statist. 16(4): 1390-1420 10.1214/aos/1176351045

  • G. Kerkyacharian, and D. Picard, 1993. Density estimation by kernel and wavelets methods: Optimality of Besov spaces, Stat. Prob. Lett., 18, 4, 327-336. https://doi.org/10.1016/0167-7152(93)90024-D

  • Hengartner, N.W., and P.B. Stark, 1995. Finite-Sample Confidence Envelopes for Shape-Restricted Densities Ann. Statist. 23(2): 525-550 10.1214/aos/1176324534

  • Silverman, B.W., 1990. Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

Inverse problems#

  • Donoho, D., 1995. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition, Applied and Computational Harmonic Analysis, 2, 101-126. 10.1006/acha.1995.1008

  • Evans, S.N., and P.B. Stark, 2002. Inverse problems as statistics, Inverse Problems, 18, 4 10.1088/0266-5611/18/4/201

  • Kuusela, M. and P.B. Stark, 2017. Shape-constrained uncertainty quantification in unfolding steeply falling elementary particle spectra, Ann. Appl. Stat. 11, 3, 1671-1710. 10.1214/17-AOAS1053

  • Stark, P.B., 1992. Inference in infinite-dimensional inverse problems: duality and discretization, J. Geophys. Res., 97, 14055-14082. https://doi.org/10.1029/92JB00739

  • Stark, P.B., 2008. Generalizing resolution, Inverse Problems, _Inverse Problems, 24, 034014. 10.1088/0266-5611/24/3/034014

Pseudo-random number generation and pseudo-random sampling#

  • Knuth, D., 1997 The Art of Computer Programming, V.II: Seminumerical methods, 3rd edition, Addison-Wesley, Boston.

  • L’Ecuyer, P. and R. Simard, 2007. TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Trans. Math. Softw., 33, http://doi.acm.org/10.1145/1268776.1268777

  • Marsaglia, G., 1968. Random Numbers Fall Mainly in the Planes, PNAS, 61, 25–28.

  • Matsumoto, M., and T. Nishimura, 1998. 8). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, 8, 3–30. doi:10.1145/272991.272995

  • McCullough, B.D., 2008. Microsoft’s ‘Not the Wichmann-Hill’ random number generator. Computational Statistics and Data Analysis, 52 (10), 4587–4593. http://dx.doi.org/10.1016/j.csda.2008.03.006

  • NIST Computer Security Division, Random Number Generation http://csrc.nist.gov/groups/ST/toolkit/rng/

  • Ottoboni, K., and P.B. Stark, 2018. Random problems with R. https://arxiv.org/abs/1809.06520

  • Stark, P.B., and K. Ottoboni, 2018. Random sampling: practice makes imperfect. https://arxiv.org/abs/1810.10985

  • Vitter, J.S., 1985. Random Sampling with a Reservoir, ACM Transactions on Mathematical Software, 11, 37–57.