Nonparametric tests and confidence bounds with applications to auditing#

Collected references#

  • Anderson, T.W., 1969. Confidence limits for the value of an arbitrary bounded random variable with a continuous distribution function. Bulletin of The International and Statistical Institute 43, 249-251.

  • Bickel, P.J., 1992. Inference and Auditing: The Stringer Bound, International Statistical Review, 60, 197-209 https://www.jstor.org/stable/1403650

  • Breth, M., 1976. Non-parametric confidence intervals for a mean using censored data. J. Roy. Statist. Soc. B 38, 251-254.

  • Breth, M., J.S. Maritz, and E.J. Williams, 1978. On distribution-free lower confidence limits for the mean of a nonnegative random variable. Biometrika 65, 529-534.

  • Edwards, D., D. Gilliland, G. Ward-Besser, and J. Lasecki, 2015. Conservative Penny Sampling, Journal of Survey Statistics and Methodology, 3, 504-523, https://doi.org/10.1093/jssam/smv025

  • Howard, S., A. Ramdas, J. McAuliffe, and J. Sekhon, 2021. Time-uniform, nonparametric, nonasymptotic confidence sequences, Annals of Statistics, 49(2): 1055-1080 DOI: 10.1214/20-AOS1991

  • Kaplan, H.M., 1987. A Method of One-sided Nonparametric Inference for the Mean of a Nonnegative Population, The American Statistician, 41:2, 157-158, DOI: 10.1080/00031305.1987.10475470

  • Gaffke, N., (unknown date), Three test statistics for a nonparametric one-sided hypothesis on the mean of a nonnegative variable, https://www.math.uni-magdeburg.de/institute/imst/ag_gaffke/files/pp1304.pdf

  • Hoeffding, W., 1963. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58(301), 13-30. https://doi.org/10.2307/2282952

  • Learned-Miller, E., and P.S. Thomas, 2019. A New Confidence Interval for the Mean of a Bounded Random Variable https://arxiv.org/abs/1905.06208

  • Luczak, T., K. Mieczkowska, and M. Sileikis, 2016. On Maximal Tail Probability of Sums of Nonnegative, Independent, and Identically Distributed Random Variables,

  • Maurer, A., and M. Pontil, 2009. Empirical Bernstein Bounds and Sample-Variance Penalization, COLT

  • Panel on Nonstandard Mixtures of Distributions, 1988. Statistical Models and Analysis in Auditing A Study of Statistical Models and Methods for Analyzing Nonstandard Mixtures of Distributions in Auditing, National Academies Press. https://nap.nationalacademies.org/initiative/panel-on-nonstandard-mixtures-of-distributions

  • Phan, M., P.S. Thomas, and E. Learned-Miller, 2021. Towards practical mean bounds for small samples. https://arxiv.org/abs/2106.03163

  • Serfling, R.J., 1974. Probability Inequalities for the Sum in Sampling without Replacement. Ann. Statist. 2, 39-48, https://doi.org/10.1214/aos/1176342611

  • Stark, P.B., 2009. Risk-Limiting Postelection Audits: Conservative \(P\)-Values From Common Probability Inequalities, IEEE Transactions on Information Forensics and Security, 4, 1005-1014, doi: 10.1109/TIFS.2009.2034190

  • Stark, P.B., 2022. ALPHA: Audit that Learns from Previously Hand-Audited Ballots, https://arxiv.org/abs/2201.02707

  • Wang, and Zhao, 2003. Nonparametric tests for the mean of a non-negative population. J. Statist. Plann. Inference, 110, 75-96.

  • Waudby-Smith,l I. and A. Ramdas, 2021. Confidence sequences for sampling without replacement, https://arxiv.org/pdf/2006.04347.pdf

  • Waudby-Smith, I., and A. Ramdas, 2021. Estimating Means of Bounded Random Variables by Betting, https://arxiv.org/pdf/2010.09686.pdf

  • Waudby-Smith, I., P.B. Stark, and A. Ramdas, 2021. RiLACS: Risk-Limiting Audits via Confidence Sequences, in Electronic Voting. E-Vote-ID 2021. Lecture Notes in Computer Science, 12900. Springer, Cham. https://doi.org/10.1007/978-3-030-86942-7_9